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Abstract

In this paper, a single method for analysing magnetic susceptibility and P-wave velocity data is proposed, assuming that both measurement

sets can be described by a second rank tensor, which is usually assumed for magnetic data only. For the velocity data, we estimate the

discrepancy this hypothesis implies with respect to the theoretical P-wave velocity formulation for transverse isotropic media, with

generalization for orthorhombic media. We find that the associated error in the determination of the principal values mostly lies below 1%

when computed for published experimental data on sandstones and limestones. This result promotes the use of a unique and simple method

for analysing anisotropy revealed by both physical properties, the advantage of which appears clearly in structural studies. We also check on

our strategy for data sampling in order to get reliable outputs, and our statistical analysis shows that the measurement design used is suitable.

The method is finally applied to a ramp-related fold structure in Corbières (France): we emphasize that combining data sets for different

physical properties and using a single inversion scheme leads to a better understanding of the deformation processes at the microstructural

scale, which can be related to structural features and tectonic settings.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction: anisotropy of physical properties in

rocks

Because of the shape, intrinsic properties and spatial

arrangement of their constituents (including porosity), rocks

are naturally anisotropic. This is generally revealed by the

measurement of any physical property in different directions

(e.g. thermal, mechanical or magnetic properties). When the

rock is deformed at the microstructural scale, this anisotropy

varies in shape and intensity, a feature widely used in

magnetic susceptibility studies on various geological

objects like folds, dykes or faults (Jelinek, 1981; Hrouda,

1982; Borradaile, 1988; Rochette et al., 1992; Tarling and

Hrouda, 1993; Borradaile and Henry, 1997). This kind of

investigation is generally referred to as anisotropy of

magnetic susceptibility (AMS) studies. The main advantage

of AMS is its ability to be treated as a second rank tensor,

which allows one to obtain information on strain directly

(Graham, 1967; Kligfield et al., 1981). However, AMS and

strain are not always linked, mainly because of the

complexity of the mineralogical sources of susceptibility

in rocks (Housen et al., 1993; Robion et al., 1999; Aubourg

and Robion, 2002). Furthermore, microstructures like

microfractures and pores cannot be directly inferred from

AMS measurements except in the case where they

concentrate iron oxides or paramagnetic clays (Borradaile

and Tarling, 1981; Pfleiderer and Kissel, 1994; Saint Bezar

et al., 2002). An alternative approach for getting infor-

mation on microstructures is the measurement of the

anisotropy of P-wave velocity (APV) (Louis et al., 2003).

When both properties give reliable results, the comparison

between the two fabrics is of great interest, especially

because APV is sensitive to the effect of the porosity

whereas AMS is generally not. In contrast with AMS, APV

has received notably less attention from structural geol-

ogists, probably because of the need for more restrictive

experimental conditions (application of transducers con-

tacting the rock in a similar way for all investigated

directions), as well as the nature of the property itself, which
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cannot be as easily handled. Let us mention, however, the

representative works of Hrouda et al. (1993), Siegesmund

et al. (1993) and Brückmann et al. (1993). Our main purpose

here is to provide the bases of a simple P-wave velocity

analysis, consistent with the AMS analysis. Indeed we

propose that the velocity data can be handled in the same

way as the magnetic susceptibility data, in the limiting case

of weak orthorhombic anisotropy (,20%). This allows one

to use a single procedure for the inversion of both acoustic and

magnetic measurements, with the advantage that the latter

derives from the application of a second-rank symmetric

tensor (elliptic profile in any plane). After validating our

method by estimating the errors carried on the principal P-

wave velocity values, we will show an example where this

method was applied on samples from a fault-related fold.

2. Analysis of a tensorial property

Let us consider a measurement m of a physical property,

the value of which depends on the direction investigated. If

the property derives from the application of a second-rank

symmetric tensor, the magnitude mi in a direction given by

the unit vector ui
�
xi; yi; zi

�
is such that:

Ax2i þ By2i þ Cz2i þ Dxiyi þ Exizi þ Fyizi ¼ mi ð1Þ

which can also be written as:

xi yi zi
� �
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The six parameters A–F define the shape and orientation

of the ellipsoid representing the spatial variation of the

property in the measurement reference. To retrieve these six

parameters, one needs at least six measurements in

independent directions. For an arbitrary number N of

measurements, Eq. (1) leads to the following set of equations:
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or alternativelyM ¼ QP where P is the unknown parameter

vector, Q the matrix built from the second order products of

coordinates and M the measurement vector. Following Nye

(1985), the parameter vector P can classically be obtained by

computing the following least-squares calculation:

P ¼ QtQ
� �21

Qt
� �

M ð4Þ

Once retrieved, the six parameters are replaced in the

second order parameter matrix defined in Eq. (2), which is

then diagonalized. By solving the eigenvalue problem for the

parameter matrix, one obtains the orientation of the three

principal axes and the principal values of the investigated

property. In the system of coordinates linked to the

eigenvectors of the parameter matrix, the cross products in

Eq. (1) vanish, and one gets the following equation for the

measure mi in the direction defined by the unit vector with

coordinates (Xi,Yi,Zi):

A0X2
i þ B0Y2

i þ C0Z2
i ¼ mi ð5Þ

where the ‘new’ parameters of the ellipsoid A0, B0 and C0 are

related to the maximum, intermediate and minimum (not

necessarily in that order) principal values of the property m.

2.1. Application to the magnetic susceptibility

The theory of the low-field AMS is based on the

assumption that the relationship between magnetization and

the magnetizing field is linear:

~M ¼ K ~H ð6Þ

where K is the symmetric second-rank tensor of magnetic

susceptibility. Eq. (6) is strictly valid for diamagnetic and

paramagnetic minerals at any range of the magnetization

field. For ferromagnetic minerals, to be valid, it requires that

the applied magnetization field be of the order of the Earth’s

magnetic field. Solving Eq. (4) for a reasonably large set of

magnetic susceptibility measurements in different directions

(at least six) and solving the eigenvalue problem for the

parameter matrix allows one to determine the orientation of

the principal axes and the principal values of the

magnetic susceptibility tensor. The eigenvectors of the

magnetic susceptibility tensor can be represented on a

stereographic diagram, each axis being surrounded by a

95% confidence ellipse, the calculation of which was

proposed by Hext (1963). These eigenvectors are associated

either with the maximum Kmax, minimum Kmin or

intermediate Kint eigenvalue of the magnetic susceptibility

tensor.

2.2. Application to the P-wave velocity

Strictly speaking, the former method cannot be applied to

acoustic velocity measurements, because there is no such a

thing as a ‘velocity tensor’. Indeed, wave velocities are

physically controlled in elastic bodies by a fourth-rank

tensor relating the strain tensor to the stress tensor in the

well-known anisotropic Hooke’s law:

sij ¼ cijklekl ð7Þ

Considering the case of a plane wave, the combination of

the relation above with the dynamical equilibrium equation

yields, after several transformations, the exact expression of

longitudinal (P) and transverse (SV and SH) velocities in
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either direction through the studied medium. A complete

outline of the corresponding theoretical derivation can be

found, for example, in Musgrave (1970).

Thomsen (1986) proposed an original notation for wave

velocities in transversely isotropic (TI) media (i.e. present-

ing a basal isotropic velocity plane), introducing three

parameters called, respectively, the P-wave anisotropy

parameter e, the S-wave anisotropy parameter g and the

anellipticity parameter d, all of them functions of some

elements of the fourth-order rigidity tensor cijkl. TI media

are axisymmetric, so that any wave velocity profile

perpendicular to the isotropic basal plane defines the overall

variation for this property. Considering the case of weak

anisotropy (,20%), Thomsen stepped further by proposing

a linear dependence of the wave velocities on the parameters

he had introduced. He obtained for the P-wave velocity the

following expression:

Vp uð Þ ¼ Vp0 1þ dsin2ucos2uþ esin4u
� �

ð8Þ

where Vp0 is the velocity perpendicular to the isotropic

plane (z-axis) and u the angle between the z-axis and the

direction of propagation.

Tsvankin (1997) extended the work of Thomsen for an

orthorhombic symmetry, which is the case that we consider

in this paper. In the weak anisotropy approximation, the

author clearly established that for P-wave velocities the

whole medium could support Thomsen’s notation (say with

terms in sin2ucos2u and sin4u) not only in the symmetry

planes, but also in any vertical plane, if one considers that

the d and e parameters are dependent of the azimuthal angle

w (Fig. 1). In such a case, the orthorhombic medium can

simply be described as a set of 2D sections, each of them

supporting the Thomsen’s notation, and so we can restrict

our discussion just to 2D schemes, with Eq. (8) as a starting

point.

Let us rewrite this equation separating p-periodic and

p/2-periodic components:

Vp uð Þ ¼ Vp0 1þ dsin2uþ ðe 2 dÞsin4u
� �

ð9Þ

or more generally

Vp uð Þ ¼ asin2uþ bsin4uþ c ð10Þ

Doing the same for a property deriving from a second-

rank symmetric tensor like magnetic susceptibility, we get

from Eq. (5) and in 2D:

mi ¼ A0X2
i þ B0Y2

i ¼ A0sin2uþ B0cos2u ð11Þ

or more generally

m uð Þ ¼ dsin2uþ e ð12Þ

One identifies the difference between Eqs. (10) and (12)

as the presence of the p/2-periodic component sin4u, which

vanishes only when d ¼ e in Eq. (9), a case precisely

referred to as elliptical anisotropy. Only when this condition

applies, P-wave velocity data can be inverted using the

tensorial method. When this condition is not satisfied, it is

not possible in theory to use the tensorial approach: but what

would be the error introduced in the determination of the

anisotropic velocity field if one would do so in any situation,

for any value of e and d?

3. Estimation of the errors induced by applying the

tensorial method to P-wave velocity data

Velocities calculated from Thomsen’s notation only

support a tensor notation when d ¼ e , the only notation

allowing the calculation of eigenvalues and eigenvectors

with the method detailed above. Nevertheless, we propose

here to test the tensorial method on various sets of

measurements corresponding to different combinations of

d and e values. Such data can be found in Thomsen (1986)

and Wang (2002) for a large variety of transverse isotropic

rocks.

We show first in Fig. 2 a synthetic case calculated from

Eq. (8) using d ¼ 20:2 and e ¼ 0:2. The solid black curve

represents a polar plot of VpðuÞ=Vp0 showing a maximum

value of 1.2 along the horizontal axis. Considering these

theoretical values as actual measurements, one can calculate

the parameters of the best velocity ‘pseudo-tensor’ using the

procedure described above and derive the corresponding

principal values. The calculated velocities are plotted in

dashed grey in Fig. 2 to be compared with the theoretical

curve. The tensorial inversion performed in 2D provides

eigenvalues equal to 0.94 (instead of 1) and 1.18 (instead of

1.2). Let us define the error done in the calculation of the

principal values as:

e ¼
1

2

0
B@

�����VThomsenðu ¼ 0Þ2 Vtensorðu ¼ 0Þ

�����
VThomsenðu ¼ 0Þ

þ

�����VThomsenðu ¼ p=2Þ2 Vtensorðu ¼ p=2Þ

�����
VThomsenðu ¼ p=2Þ

1
CA ð13Þ

The error induced on principal values for this synthetic case

is here less than 4%.

In a second stage we have applied the same procedure for

d ranging from 20.4 to 0.4 by steps of 0.04, and for e

ranging from 0 to 0.4 by steps of 0.02. We show in Fig. 3 a

contour plot for the error e given by Eq. (13) in the (e,d)

coordinates. On the same figure, we also plotted real data for

transverse isotropic rocks (sandstones and limestones) taken

from Thomsen (1986) and Wang (2002). Doing so, one can

estimate the expected range of the error e for d and e values

representative of real situations in sedimentary rocks. We
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can see that the experimental data lie mostly between 0 and

1% of error, and that there are no data lying above 4% of

error. We conclude here that the tensorial inversion applied

to P-wave velocity data gives accurate results for the

estimation of the spatial variability of the property. This

means that the same method can be applied for the inversion

of both the magnetic susceptibility and the acoustic velocity

data, which is of great interest in structural studies, as will

be discussed later.

In the following, we outline our measurement protocol

and address the question of its relevance to analyse the 3D

spatial variability of the investigated properties.

4. Procedure for laboratory measurements

To determine the P-wave velocity, one needs to measure

the time of flight for acoustic waves travelling from an

ultrasonic transmitter to a receiver across a given travel

path. Detailed technical information on the sample prep-

aration and experimental devices can be found in Louis et al.

(2003). In summary, three mutually orthogonal cylinders

are cored from a block (see Fig. 4a), each sample having the

AMS-standard dimensions (22.5 mm long, 25 mm diam-

eter). On each cylinder, eight measurements are performed

across diameters every 22.58 (Fig. 4b), so that 24

measurements in total are finally available: however, one

can notice that only 21 of them are independent since three

directions are sampled twice (Fig. 4c). We take advantage of

these redundant directions to ‘level’ the measured values in

order to correct for the non-reproducibility of the measure-

ments from sample to sample. This is done by slightly

shifting the whole data set for two samples so that common

directions of measurement give a unique value of velocity.

After this procedure, we can virtually consider that all the

measurements have been made on a single sample. If we

take into account the error on the travel time readings and

the error on sample length, the standard error for the

measurements is in the range 0.02–0.03 km/s. The output of

Fig. 1. P-wave velocity model for a weakly anisotropic orthorhombic medium according to Tsvankin (1997). A couple of parameters (di, e i) (Thomsen, 1986)

are defined in each one of the two symmetry planes (xz) and (yz), giving, respectively, (dy, ey) and (dx, ex). Velocities are given in both planes following

Thomsen’s notation. Outside these two planes, this notation is still assumed, provided the azimuthally dependent parameters d(w) and e(w) are used.

Fig. 2. Polar plot showing the theoretical P-wave velocity variation for a

transversely isotropic medium (black) compared with the velocity

evolution derived from the best-fitting tensor retrieved from the theoretical

values (grey).
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the inversion, using routines written with Scilab, is an equal-

area lower hemispheric stereoplot on which the principal

axes and their respective 95% confidence ellipses are drawn,

using the method of Hext (1963). As an example, the

stereoplot obtained for the Indiana limestone is shown in

Fig. 5. For this rock, we can see that the exhibited fabric is

typically sedimentary, i.e. characterised by a quasi-isotropic

velocity plane parallel to the bedding (large confidence

ellipses), with a near vertical minimum velocity axis. The

minimum, intermediate and maximum velocity values are

given in Fig. 5, leading to an anisotropy factor (Vmax 2

Vmin)/Vmean equal to 11%: the velocity contrast is signifi-

cantly larger than the uncertainty induced by the method. In

the example shown in Fig. 5, the three samples were cored

from a block with one face parallel to the bedding, so that

the principal axes were located close to measurement paths.

One important question to be addressed is whether the result

depends on the orientation of the samples with respect to the

stereoplot reference: in other words one can legitimately ask

the question whether the method would be so accurate if the

principal axes were located outside the measurement

scheme, a case that we observed, for example, in the

Chaudrons fold samples (e.g. Fig. 7). How can we quantify

this geometrical effect?

Indeed, since our measurements are not performed in

directions homogeneously distributed on a sphere (cf.

Fig.4c), a slight statistical error is expected to act on the

principal values. This question is of great importance,

especially when the method is designed to work in natural

contexts where no orientation is known a priori. During

Fig. 3. Errors made on the determination of principal velocities during inversion are plotted as contour plots in Thomsen’s d and e coordinates. Data taken from

Thomsen (1986) are represented as diamonds and those of Wang (2002) as squares and triangles: they mostly range between 0 and 1% of error. The crossed-

circle symbol locates the synthetic example corresponding to Fig. 1.

Fig. 4. (a) Respective position of the three oriented core samples with the eight measurement directions indexed on the X sample. (b) Example of a

measurement path with u starting from the Z-axis. (c) 24 measured positions in equal-area stereographic projection.
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inversion, measurement errors propagate in the calculations.

Considering that the standard error s is the same for all the

measurements, the covariance matrix relative to the

parameter vector P defined in Eq. (3) can be written as:

covðPÞ ¼ s2 tQQ
� �21

ð14Þ

where Q is the ‘design matrix’, also defined in Eq. (3).

We saw in Section 2 that the eigenvalues are retrieved

first by putting back the parameters Pi in the original

second-rank tensor, then by diagonalizing this tensor.

How do we evaluate the deviation around these

eigenvalues? Hext (1963) derived a simple expression

for the confidence interval Dei for any principal value ei,

using the estimate s of s:

Dei ¼ ^tasr with r ¼ tai
tQQ
� �21

ai

h i1=2
ð15Þ

where ai is the vector built in Eq. (1) such that taiP ¼ mi

and ta is the (1 2 a) percent confidence Student’s

distribution. Eq. (15) provides the confidence interval of

ei through the application of the covariance matrix (14) in

the ‘direction’ ai. Depending on the direction in which

this calculation is performed, the confidence interval

varies, and the design matrix Q determines these

variations. Since the principal values are material-

dependent properties and therefore should not depend on

the measurement set-up or the orientation of the core

samples, the definition of Q is of prime importance. A

design guaranteeing a nearly constant r-term in Eq. (15)

for any set of coordinates is called ‘rotatable’ (Box and

Hunter, 1957; Hext, 1963). In a recent paper, Owens

(2000) compared different designs commonly used in

AMS studies, identifying the r-term as the ‘rotatability’

coefficient, and mapping it as a contour plot on a

stereographic diagram for a predefined grid of ai
orientations. We conducted exactly the same calculation

in order to check for our design on the distortion likely to

operate on any principal value, depending on its location.

We show in Fig. 6 the stereoplot obtained for the 24

measurements positions used in our procedure (Fig.4c). As

the number of directions investigated is larger than the

number of parameters calculated (six), r is lower than one

everywhere. One can also notice that the further from

the measurement positions (diamonds on the figure), the

higher the value of r. What are the consequences of the

heterogeneous spatial distribution of r with zones of higher

(,0.75) and lower (,0.45) values? For a given principal

value, depending on its orientation, the confidence interval

can be increased or decreased by 25%, with the direct

consequence of modifying slightly the size of the confidence

ellipse attached to the corresponding vector. Since, in the

cases that we consider in the present paper, the difference

between extreme values is about 10 times their own

estimated standard deviation, the variations calculated for

Fig. 5. Example of inversion for Indiana limestone. The three principal axes

of the velocity pseudo-tensor are surrounded by 95% confidence ellipses

(Hext, 1963). This carbonate rock shows a typical sedimentary fabric with

virtually no velocity variation within the bedding plane (transverse

isotropy). The anisotropy ratio is equal to 11%.

Fig. 6. Stereographic plot showing the variations of the ‘rotatability’

coefficient r as given by Owens (2000) for our 24 measurements design.

Diamonds indicate the investigated directions.
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r can be merely considered as having a negligible effect.

Nevertheless, this kind of analysis is still very useful

because it can help in the interpretation in some specific

cases, in particular those associated with very weak

anisotropy (say ,5%).

Taking into account the results of our statistical analysis,

we can finally consider that our method based on 24

measurements distributed in space provides relevant

information to characterize the anisotropy of the physical

properties investigated. The method could actually be

extended to other properties and not be limited to acoustic

and magnetic properties. We now briefly present an

application of this method to a natural case.

5. An example of joint inversion of magnetic and acoustic

velocity data

The method that we propose allows a fast and simple

analysis of directional data, in particular in structural studies

where the attention is focused on the geometrical location of

the principal directions for a given property (magnetic,

elastic) and the associated anisotropy, rather than on the

exact shape of the spatial variation. We provide here an

example of a block of red siltstone retrieved in a ramp-

related fold of Paleogenic age (Corbières, France). An

exhaustive study of this structure has been made by Tavani

et al. (2003). In Fig. 7 we show an equal area stereographic

plot where the principal axes obtained from the inversion of

magnetic susceptibility and velocity data are plotted in

geographical coordinates with their corresponding ellipses

of error. The bedding and solution cleavage planes are also

drawn on the plot. This block is located near the steep

forelimb of the fold. Here, the cleavage pole is not parallel

to the bedding plane but seems rather to express a local

shear with a top to backlimb motion. One can check the very

good correlation between the cleavage pole and the

minimum axes of magnetic susceptibility and P-wave

velocity. Therefore, this suggests that a microstructural

feature mimics the cleavage measured at the outcrop scale.

Moreover, the explanation of such a strong correlation

between magnetic and elastic fabrics is far from being

obvious, because the origin of the recorded signal is

different for the two properties. AMS data, which mainly

reflect shape or crystallographic orientation of the consti-

tutive minerals, are often interpreted in strained rocks as the

result of a passive rotation or concentration along cleavage

planes of the magnetic phases, while APV is strongly

sensitive to the structure of the porosity. Here, the velocity

data give complementary information: they show that the

material is softer (lower elastic moduli) in the shortening

direction, which could be interpreted by the presence of

parallel microcleavage planes oriented perpendicular to the

shortening direction. If oxides have concentrated in these

microcleavage planes, as proposed for a similar lithology by

Pfleiderer and Kissel (1994) in the same area, the magnetic

fabric would be consistent with the elastic fabric derived

from the velocity measurements, which is exactly what we

observed. Some microstructural observations confirming

this hypothesis will be detailed in another paper dedicated to

Fig. 7. Field example showing correlated magnetic (black) and velocity (grey) data. The asterisk represents the cleavage pole situated close to the minimum

axes (circles). Triangle: intermediate axis; square: maximum axis.
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the comparison between anisotropies at different scales in

the same fold. This example shows that the constraints

provided by coupling several kinds of measurements

analysed in a consistent way are of great help in structural

studies, and we suggest that our method could be applied

more systematically, in particular to link macroscopic

properties to microstructure attributes.

6. Conclusion

A unified method has been proposed for the analysis of

anisotropy in rocks based on the same measurement scheme

and inversion procedure for magnetic susceptibility and

P-wave velocity data. For the latter, the first step was to

evaluate the error made by considering that this physical

property supports a second-rank tensor description. It was

found that the error was negligible in most cases, promoting

the use of this method, with a possible extension to other

physical properties. We also checked by a spatial analysis of

error propagation that the measurement scheme using three

orthogonal core samples on which 24 directions in total are

investigated provides accurate results in the definition of

principal directions. The advantage of this technique was

demonstrated in an application in structural geology where

one needs to get rapidly principal directions and values for a

given property, to be related to structural features and

tectonic settings.
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